A MAP-MRF filter for phase-sensitive coil combination in autocalibrating partially parallel susceptibility weighted MRI

نویسندگان

  • Sreekanth Madhusoodhanan
  • Joseph Suresh Paul
چکیده

A statistical approach for combination of channel phases is developed for optimizing the Contrast-to-Noise Ratio (CNR) in Susceptibility Weighted Images (SWI) acquired using autocalibrating partially parallel techniques. The unwrapped phase images of each coil are filtered using local random field based probabilistic weights, derived using energy functions representative of noisy sensitivity and tissue information pertaining to venous structure in the individual channel phase images. The channel energy functions are obtained as functions of local image intensities, first or second order clique phase difference and a threshold scaling parameter dependent on the input noise level. Whereas the expectation of the individual energy functions with respect to the noise distribution in clique phase differences is to be maximized for optimal filtering, the expectation of tissue energy function decreases and noise energy function increases with increase in threshold scale parameter. The optimum scaling parameter is shown to occur at the point where expectations of both energy functions contribute to the largest possible extent. It is shown that implementation of the filter in the same lines as that of Iterated Conditional Modes (ICM) algorithm provides structural enhancement in the coil combined phase, with reduced noise amplification. Application to simulated and in vivo multi-channel SWI shows that CNR of combined phase obtained using MAP-MRF filter is higher as compared to that of coil combination using weighted average.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virtual coil concept for improved parallel MRI employing conjugate symmetric signals.

A new approach for utilizing conjugate k-space symmetry for improved parallel MRI performance is presented. By generating virtual coils containing conjugate symmetric k-space signals from actual coils, additional image- and coil-phase information can be incorporated into the reconstruction process for parallel acquisition techniques. In that way the reconstruction conditions are improved, resul...

متن کامل

Generalized autocalibrating partially parallel acquisitions (GRAPPA).

In this study, a novel partially parallel acquisition (PPA) method is presented which can be used to accelerate image acquisition using an RF coil array for spatial encoding. This technique, GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is an extension of both the PILS and VD-AUTO-SMASH reconstruction techniques. As in those previous methods, a detailed, highly accurate R...

متن کامل

Optimized parallel imaging for dynamic PC-MRI with multidirectional velocity encoding.

Phase contrast MRI with multidirectional velocity encoding requires multiple acquisitions of the same k-space lines to encode the underlying velocities, which can considerably lengthen the total scan time. To reduce scan time, parallel imaging is often applied. In dynamic phase contrast MRI using standard generalized autocalibrating partially parallel acquisitions (GRAPPA), several central k-sp...

متن کامل

Magnetic Resonance in Medicine 63:502–509 (2010) IIR GRAPPA for Parallel MR Image Reconstruction

Accelerated parallel MRI has advantage in imaging speed, and its image quality has been improved continuously in recent years. This paper introduces a two-dimensional infinite impulse response model of inverse filter to replace the finite impulse response model currently used in generalized autocalibrating partially parallel acquisitions class image reconstruction methods. The infinite impulse ...

متن کامل

High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition.

Single-shot echo-planar imaging (EPI) is well established as the method of choice for clinical, diffusion-weighted imaging with MRI because of its low sensitivity to the motion-induced phase errors that occur during diffusion sensitization of the MR signal. However, the method is prone to artifacts due to susceptibility changes at tissue interfaces and has a limited spatial resolution. The intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1610.09498  شماره 

صفحات  -

تاریخ انتشار 2016